Deterministic and random coincidence point results for f-nonexpansive maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

best proximity pair and coincidence point theorems for nonexpansive set-valued maps in hilbert spaces

this paper is concerned with the best proximity pair problem in hilbert spaces. given two subsets $a$ and $b$ of a hilbert space $h$ and the set-valued maps $f:a o 2^ b$ and $g:a_0 o 2^{a_0}$, where $a_0={xin a: |x-y|=d(a,b)~~~mbox{for some}~~~ yin b}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in a$ such that $$d(g(x_0),f(x_0))=d(a,b).$$

متن کامل

Random coincidence point results for weakly increasing functions in partially ordered metric spaces

The aim of this paper is to establish random coincidence point results for weakly increasing random operators in the setting of ordered metric spaces by using generalized altering distance functions. Our results present random versions and extensions of some well-known results in the current literature.

متن کامل

Coincidence point and common fixed point results via scalarization function

The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for three self mappings in $b$-metric spaces. Next, we obtain cone $b$-metric version of these results by using a scalarization function. Our results extend and generalize several well known comparable results in the existing literature.

متن کامل

random coincidence point results for weakly increasing functions in partially ordered metric spaces

the aim of this paper is to establish random coincidence point results for weakly increasing random operators in the setting of ordered metric spaces by using generalized altering distance functions. our results present random versions and extensions of some well-known results in the current literature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2006

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2005.10.057